Reducing Storage Costs with Tiny Databases
OCT, 2023
by Andrew Walker.
Author Andrew Walker
Andrew Walker is a software architect with 10+ years of experience. Andrew is passionate about his craft, and he loves using his skills to design enterprise solutions for Enov8, in the areas of IT Environments, Release & Data Management.
In today’s data-driven landscape, the effective management of data storage in non-production environments holds unprecedented significance. However, the escalating costs associated with data storage cannot be overlooked. In this article, we will delve deep into the strategies and considerations that organizations can employ to optimize storage in these lower environments without incurring exorbitant expenses.
Enov8 Test Data Manager
*aka ‘Data Compliance Suite’
The Data Securitization and Test Data Management platform. DevSecOps your Test Data & Privacy Risks.
Understanding Lower Environments
Lower environments, comprising development, testing, and staging, are foundational components in the software development lifecycle. These environments serve as crucibles for ensuring that software applications function flawlessly post-deployment. Nevertheless, the intricacies of data management within these lower environments present formidable challenges, particularly in the realm of storage cost optimization.
The Cost Implications
The costs associated with data storage in lower environments can burgeon exponentially if left unchecked. Visualize the scenario wherein redundant data is stored across multiple testing environments or where obsolete data that serves no functional purpose continues to occupy valuable storage resources. The resulting financial burden can be staggering. For instance, consider a hypothetical scenario in which an organization’s production data experiences an annual growth rate of 10%. Without proactive optimization measures, the cascading effect on non-production environments could translate into an exponential surge in storage costs.
Major Contributors to High Storage Costs
Several factors act as catalysts, inflating storage costs within lower environments:
- Data Duplication: The practice of maintaining multiple copies of identical data across different lower environments, needlessly consuming storage capacity.
- Lack of Data Lifecycle Management: The absence of a systematic approach to oversee the entire lifecycle of data, from its creation to eventual deletion, contributes to storage inefficiency.
- Infrequent Data Purging: Retaining obsolete or irrelevant data beyond its useful lifespan, failing to systematically purge data that should no longer be retained.
- Over-provisioning: The over-allocation of storage resources beyond what is truly necessary for the operations within these lower environments.
Strategies to Reduce Storage Costs
a. Data Subsetting
Data subsetting is a prudent practice that involves the utilization of smaller, yet still pertinent, datasets tailored for specific testing scenarios. Instead of duplicating and storing the entire production database within lower environments, organizations can meticulously extract and retain only a subset of data that serves the precise testing requirements, thereby conserving valuable storage space.
b. Database Virtualization
Database virtualization represents an innovative approach whereby virtual representations of databases are established within non-production environments. Instead of housing full-fledged copies of databases, this approach advocates the maintenance of lightweight versions that fulfill the same functional purposes. This not only leads to significant savings in storage space but also enhances data agility and flexibility.
c. Governance and Housekeeping
Data governance assumes a central role, transcending mere compliance concerns and extending into the realm of operational efficiency. Robust governance policies, when enacted, ensure that data storage remains perpetually optimized. Regular housekeeping activities, including scheduled data purges and archiving of historical data, act as guardians, ensuring that only relevant and current data occupies precious storage resources.
The Role of Automation in Storage Management
In an era where operational efficiency is paramount, automation emerges as the indisputable champion. The automation of data lifecycle management processes, particularly those associated with subsetting, virtualization, and governance, empowers organizations to secure storage optimization. Automation not only contributes to cost reduction but also streamlines data management, making data readily available whenever needed.
Data Privacy and Compliance
In the contemporary landscape, characterized by stringent regulations like GDPR, PCI, and HIPAA, data privacy stands as an imperative concern. This is particularly significant within lower environments, where data is frequently accessed and manipulated during the development and testing phases. Thus, it is incumbent upon organizations to ensure that sensitive data is meticulously masked or anonymized. This dual-pronged approach not only maintains regulatory compliance but also fosters trust among stakeholders.
Conclusion
The management of storage costs within lower environments necessitates a delicate equilibrium between operational efficiency and effectiveness. While the availability of sufficient data for testing and development remains non-negotiable, it is equally imperative to uphold the principles of storage optimization. By prioritizing and implementing strategies such as data subsetting, database virtualization, and the establishment of robust governance frameworks, organizations can successfully strike this balance. In doing so, they ensure seamless operations without succumbing to unnecessary expenses, thereby fortifying their competitive edge in today’s data-driven landscape.
Relevant Articles
Enterprise Release Management: A Comprehensive Guide
Enterprise Release Management (ERM) is a set of end-to-end practices that enable large organizations to effectively manage software releases. ERM is uniquely designed for the challenges of multiple teams building and releasing software simultaneously. ERM establishes...
Your Essential Test Environment Management Checklist
“Test Environment Management Checklist.” Yep, that sounds like a mouthful, but don’t let that discourage you. The idea here is quite simple—adopting a checklist to evaluate the soundness of your test environment management approach. Even though the idea sounds simple...
A Detailed Guide to SAP Data Masking
SAP systems handle some of the most sensitive data in the enterprise: financial transactions, HR information, supplier records, customer profiles, operational details, and more. For that reason, copying production data into non-production systems without modification...
Release vs Deployment Management: What’s the Difference?
In the always-an-adventure world of IT service management, there are several key processes that are essential for delivering high-quality services to customers and end-users. Two of the most critical processes are release management and deployment management....
7 Tools to Help with Application Rationalization
Application rationalization is the process of identifying which applications an organization should keep, update, consolidate, or retire. Think of it as a financial adviser, but instead of your investment portfolio, it's your application portfolio. Most companies take...
Pairing DevOps with Test Environment Management
For many organizations, DevOps is the best practice for efficiency. However, this model doesn’t come easily as the organization needs to put certain things in place. For example, the firm needs to incorporate the right tools to ensure its delivery pipeline and...









